Dehydroepiandrosterone: a potential signalling molecule for neocortical organization during development.
نویسندگان
چکیده
Dehydroepiandrosterone (DHEA) and its sulfate derivative (DHEAS) are the most abundant steroids produced by the human adrenal, but no receptors have been identified for these steroids, and no function for them has been established, other than as precursors for sex steroid synthesis. DHEA and DHEAS are found in brains from many species, and we have shown that enzymes crucial for their synthesis, especially P450c17 (17alpha-hydroxylase/c17,20 lyase), are expressed in a developmentally regulated, region-specific fashion in the developing rodent brain. One region of embryonic expression of P450c17, the neocortical subplate, has been postulated to play a role in guiding cortical projections to their appropriate targets. We therefore determined if products of P450c17 activity, DHEA and DHEAS, regulated the motility and/or growth of neocortical neurons. In primary cultures of mouse embryonic neocortical neurons, DHEA increased the length of neurites containing the axonal marker Tau-1, and the incidence of varicosities and basket-like process formations in a dose-dependent fashion. These effects could be seen at concentrations normally found in the brain. By contrast, DHEAS had no effect on Tau-1 axonal neurites but increased the length of neurites containing the dendritic marker microtubule-associated protein-2. DHEA rapidly increased free intracellular calcium via activation of N-methyl-D-aspartate (NMDA) receptors. These studies provide evidence of mechanisms by which DHEA and DHEAS exert biological actions, show that they have specific functions other than as sex steroid precursors, mediate their effects via non-classic steroid hormone receptors, and suggest that their developmentally regulated synthesis in vivo may play crucial and different roles in organizing the neocortex.
منابع مشابه
Effects of Neonatal C-Fiber Depletion on Interaction between Neocortical Short-Term and Long-Term Plasticity
Introduction: The primary somatosensory cortex has an important role in nociceptive sensory-discriminative processing. Altered peripheral inputs produced by deafferentation or by long-term changes in levels of afferent stimulation can result in plasticity of cortex. Capsaicin-induced depletion of C-fiber afferents results in plasticity of the somatosensory system. Plasticity includes short-term...
متن کاملGenomic characterisation of a Fgf-regulated gradient-based neocortical protomap.
Recent findings support a model for neocortical area formation in which neocortical progenitor cells become patterned by extracellular signals to generate a protomap of progenitor cell areas that in turn generate area-specific neurons. The protomap is thought to be underpinned by spatial differences in progenitor cell identity that are reflected at the transcriptional level. We systematically i...
متن کاملI-34: Steroid Hormone Signalling at the FetomaternalInterface
Background: Progesterone is indispensable for differentiation of human endometrial stromal cells (HESCs) into decidual cells, a process that critically controls embryo implantation. However, HESCs also abundantly express androgen receptors (AR), yet the role of this member of the superfamily of ligand-dependent transcription factors in the decidual process remains poorly elucidated. Materials a...
متن کاملSuperoxide signalling required for multicellular development of Dictyostelium.
Reactive oxygen species are known to have a signalling role in many organisms. In bacteria and yeast various response systems have evolved to combat oxidative stress which are triggered by reactive oxygen species. Mammals and plants are known to actively generate reactive oxygen species such as superoxide during signalling responses to a variety of extracellular factors. We report here the gene...
متن کاملP15: Hippocampus-Neocortical Communication in Learning
The hippocampus is located in the medial temporal lobe and is a part of the forebrain. It plays a critical role in formation of declared memories. The hippocampus is banana­-shaped and communicates with all parts of neocortex. Reptiles and birds have structures like hippocampus that potentially serve as navigation functions. During the mammalian evolution, the neocortex has a large expansio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 8 شماره
صفحات -
تاریخ انتشار 1998